
Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Windows
PowerShell™:
TFM®

Don Jones
Jeffery Hicks

SAPIEN Press
Napa,California

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and SAPIEN Press was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Windows is a registered trademark, and Windows PowerShell is a trademark, of Microsoft Corporation in the United States and other
countries.

The author and publisher have taken care in the publication of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or software programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more information,
please contact:

SAPIEN Press
1-866-PRIMALS
sales@sapien.com

Visit SAPIEN Press on the Web : www.sapienpress.com

Library of Congress Cataloging-in-Publication Data
Jones, Don; Hicks, Jeffery

Microsoft PowerShell: TFM / Don Jones and Jeffery Hicks
 p. cm.
 ISBN 0-9776597-2-0 (pbk. : alk. Paper)
 1. Microsoft Windows (computer file) 2. Operating systems (Computers)
3. PowerShell (Computer program language) I. Title

Copyright ©2006 by SAPIEN Technologies, Inc.

All rights reserved. No part of this publication may be reproduced, stored an a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior express written consent of the publisher.
Printed in the United States of America.

For information on obtaining permission for use of material from this work, please submit a written request to:

SAPIEN Technologies, Inc.
Rights and Contracts Department
3212 Jefferson St #288
Napa, CA 94558
Fax: 707-252-8700

1st Printing

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Foreword
In writing a book for Windows PowerShell, my co-author and I had some difficult
decisions to make. PowerShell is a terrifically powerful environment; however, with all
that power comes a lot of complexity. It’s fascinating, but it’s also easy to find yourself
slipping out of the real easy-administrative-scripting world and into a more hardcore
.NET Framework developer’s world. We decided to keep our audience, the Windows
administrator, firmly in mind. After all, that’s where both Jeffery and I come from, and
we know what a pragmatic, practical bunch administrators are. Typically, administrators
just want a tool that’ll let them get their jobs done with the minimum amount of
additional fuss or effort.
That said, administrators’ specific needs vary pretty widely. So we decided to stick with
the good old “80/20” rule: Cover the information that 80% of the audience will use 80%
of the time, and consider everything else to be “out of scope.” We did this not out of a
desire to “dumb down” the book or provide a less-comprehensive work, but rather to
keep the book focused on what most administrators will need to use most of the time.
Doing so keeps the discussion free of distractions which most readers won’t find useful,
allowing most readers to learn how to use PowerShell as quickly as possible.
And learning is really the key goal of this book: While we’ve included a good deal of
reference material, it’s not intended as a reference, but rather as a learning tool. So
whenever we needed to make a tradeoff between “easy, clear instruction” and
“comprehensive coverage,” we’ve generally erred on the side of ease and clarity. As
more Windows administrators become familiar with, and proficient in, PowerShell we’ll
likely get feedback about features or techniques that we didn’t include. We want that
feedback! In fact, visit www.SAPIENPress.com to give us that feedback when it occurs
to you; the time will doubtless arrive for an “advanced” PowerShell title that’s more
comprehensive and doesn’t need to worry about teaching the basics, and your feedback
will help craft that title.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

In the meantime, we hope you’ll find this title useful. We’ve tried to focus on the core
PowerShell techniques that you’ll get immediate use from, while throwing in a good bit
of more intermediate and advanced material to keep you learning for months, or even
years, to come. We’ve tried to stay away from detailed “under the hood” explanations
that, while certainly interesting, don’t really help you learn or use PowerShell better.
We’ve tried to keep examples short and easy to follow, so that you can use them as the
basis for your learning.
And, speaking of examples, you’ll find them all for download at
www.SAPIENPress.com. Although we’ve made every effort to ensure the technical
accuracy of these examples, changing products, typesetting errors, and other problems are
sure to occur; by making the examples available for download, we can ensure that they’re
kept up-to-date and corrected. The Web site will also contain an “errata” list of any
changes that we need to make to the text in order to keep it correct and accurate.
Note that the first edition of this text is based on the second Release Candidate (RC2) of
Windows PowerShell; we don’t anticipate any major corrections once PowerShell
releases to manufacturing (RTM), but any corrections that do need to be made will be
posted on the SAPIEN Press Web site for you, at no additional charge.
Thanks for choosing this book for your PowerShell education. Now, dive in: PowerShell
awaits.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Foreword ...iii
Part I: Introduction...1

Getting Started...3
What is PowerShell, and Why Should I Care? .. 3
PowerShell Requirements ... 4
Quick Start ... 5
Navigating Your System .. 5
Using the PowerShell Command Line... 7
Aliases ... 7
Basic Cmdlets.. 8

Parameters ...9
Ubiquitous Parameters ...9

Snap-Ins... 9
Profiles ... 11
Scripts .. 13
Redirection and Substitution.. 14
Variables.. 15

Variable Names and Intrinsic Variables ..16
Variables are Objects..16
String Variables and Embedding ..17
Parsing Mode..18

Special Characters .. 19
Scopes... 19
Functions ... 20
Pipelines .. 20
Getting Help... 21
Multiple Shells.. 21
Where Do You Go From Here? ... 22
How to Use This Book ... 24

Your First PowerShell Script Error! Bookmark not defined.
Script Editing.. Error! Bookmark not defined.
The Script... Error! Bookmark not defined.

Security Features... Error! Bookmark not defined.
Why Won’t My Scripts Run?.. Error! Bookmark not defined.

When Scripts Don’t Run..Error! Bookmark not defined.
Digital Signatures..Error! Bookmark not defined.
Trusted Scripts..Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Execution Policies...Error! Bookmark not defined.
Signing Scripts ..Error! Bookmark not defined.

Alternate Credentials ... Error! Bookmark not defined.
Is PowerShell Dangerous? .. Error! Bookmark not defined.

Safer Scripts from the InternetError! Bookmark not defined.
Passwords and Secure Strings ... Error! Bookmark not defined.

Technologies Overview....................................... Error! Bookmark not defined.
Microsoft .NET Framework Essentials Error! Bookmark not defined.

Reflection ..Error! Bookmark not defined.
Assemblies..Error! Bookmark not defined.
Classes ...Error! Bookmark not defined.
Advanced .NET in PowerShell......................................Error! Bookmark not defined.

Variables as Objects.. Error! Bookmark not defined.
Variable Types ..Error! Bookmark not defined.
Variable Precautions...Error! Bookmark not defined.
.NET Conclusion ...Error! Bookmark not defined.

Understanding Scope .. Error! Bookmark not defined.
Windows Management Instrumentation Essentials................. Error! Bookmark not defined.

WMI Architecture ..Error! Bookmark not defined.
WMI Documentation ...Error! Bookmark not defined.
Working with Classes..Error! Bookmark not defined.
Remote Computers and WMIError! Bookmark not defined.
Configuring with WMI..Error! Bookmark not defined.

Part II: PowerShell Scripting............................... Error! Bookmark not defined.
Variables, Arrays, Objects and Escape Sequences........Error! Bookmark not

defined.
Variables.. Error! Bookmark not defined.

Get-Variable..Error! Bookmark not defined.
Environment Variables..Error! Bookmark not defined.
Set-Variable ..Error! Bookmark not defined.
New-Variable ..Error! Bookmark not defined.
Clear-Variable ...Error! Bookmark not defined.
Remove-Variable ..Error! Bookmark not defined.

Arrays... Error! Bookmark not defined.
Associative Arrays ... Error! Bookmark not defined.

Creating an Associative Array.......................................Error! Bookmark not defined.
Using an Associative Array ...Error! Bookmark not defined.

Objects... Error! Bookmark not defined.
Properties..Error! Bookmark not defined.
Methods ..Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Variables as Objects.. Error! Bookmark not defined.
Variable Types ..Error! Bookmark not defined.
Variable Precautions...Error! Bookmark not defined.

Creating New Objects.. Error! Bookmark not defined.
Escape Characters .. Error! Bookmark not defined.

Operators ... Error! Bookmark not defined.
Arithmetic Operators.. Error! Bookmark not defined.

Precedence...Error! Bookmark not defined.
Variables ...Error! Bookmark not defined.
Unary Operators ...Error! Bookmark not defined.

Logical Operators .. Error! Bookmark not defined.
Assignment Operators ... Error! Bookmark not defined.
Bitwise Operators .. Error! Bookmark not defined.
Special Operators .. Error! Bookmark not defined.

Replace Operator..Error! Bookmark not defined.
Type ..Error! Bookmark not defined.
Range Operator ..Error! Bookmark not defined.
Call Operators...Error! Bookmark not defined.
Format Operator ...Error! Bookmark not defined.

Comparison Operators .. Error! Bookmark not defined.
Regular Expressions ... Error! Bookmark not defined.

Introduction to Regular Expressions.. Error! Bookmark not defined.
Writing Regular Expressions ... Error! Bookmark not defined.
Regex Object ... Error! Bookmark not defined.
Regular Expression Examples .. Error! Bookmark not defined.

E-mail Address..Error! Bookmark not defined.
String with No Spaces...Error! Bookmark not defined.
Domain Credential ..Error! Bookmark not defined.
Telephone Number ...Error! Bookmark not defined.
IP Address ..Error! Bookmark not defined.

Regular Expression Reference.. Error! Bookmark not defined.
Loops and Decision Making Constructs Error! Bookmark not defined.

ForEach ... Error! Bookmark not defined.
For.. Error! Bookmark not defined.
While .. Error! Bookmark not defined.

Do While ...Error! Bookmark not defined.
Do Until ...Error! Bookmark not defined.

If ... Error! Bookmark not defined.
Switch .. Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Break.. Error! Bookmark not defined.
Continue... Error! Bookmark not defined.

Grouping, Sorting, Formatting, Exporting and More..................................25
Redirection... 25

Out-File ...26
Out-Printer ..27
Tee-Object ..27

Write-Host.. 27
Formatting.. 29

Format-List..29
Format-Table ..30
Format-Wide ...32
Format-Custom ...33
GroupBy..34

Sort-Object... 35
Where-Object... 38
Exporting.. 39

Export-CSV ...39
Export-CliXML...41
ConvertTo-HTML ..42

System Forms.. 44
Modularization ... Error! Bookmark not defined.

Script Blocks .. Error! Bookmark not defined.
Functions ... Error! Bookmark not defined.

Input Arguments..Error! Bookmark not defined.
Returning a Value ...Error! Bookmark not defined.
Piping to Functions ...Error! Bookmark not defined.
Function Phases ...Error! Bookmark not defined.

Filters ... Error! Bookmark not defined.
Functions vs. Filters ..Error! Bookmark not defined.

Cmdlets and Snapins... Error! Bookmark not defined.
Modularization Tricks... Error! Bookmark not defined.

Debugging and Error Handling........................... Error! Bookmark not defined.
Handling Errors.. Error! Bookmark not defined.

Error Actions ...Error! Bookmark not defined.
Trapping Errors ...Error! Bookmark not defined.
Trap Scope ...Error! Bookmark not defined.
Throwing Your Own Exceptions....................................Error! Bookmark not defined.
Tips for Error Trapping..Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Debugging Methodology.. Error! Bookmark not defined.
Debug Mode and Tracing .. Error! Bookmark not defined.

Managing Windows with PowerShell................. Error! Bookmark not defined.
Managing Files and Directories ... Error! Bookmark not defined.

Creating Text Files..Error! Bookmark not defined.
Reading Text Files ..Error! Bookmark not defined.
Copying Files ..Error! Bookmark not defined.
Deleting Files ..Error! Bookmark not defined.
Renaming Files ...Error! Bookmark not defined.
Creating Directories ..Error! Bookmark not defined.
Listing Directories ...Error! Bookmark not defined.
Deleting Directories...Error! Bookmark not defined.

Managing Systems with PowerShell and WMI........................ Error! Bookmark not defined.
Managing Services .. Error! Bookmark not defined.

Listing Services...Error! Bookmark not defined.
Starting Services...Error! Bookmark not defined.
Stopping Services ...Error! Bookmark not defined.
Managing Services ...Error! Bookmark not defined.

Managing Permissions .. Error! Bookmark not defined.
Managing Event Logs .. Error! Bookmark not defined.
Managing Processes ... Error! Bookmark not defined.
Managing the Registry... Error! Bookmark not defined.
Managing Directory Services... Error! Bookmark not defined.

Part III: Advanced PowerShell Error! Bookmark not defined.
Shortcuts and Tips .. Error! Bookmark not defined.

Command-Line Tips .. Error! Bookmark not defined.
PrimalScript Tips.. Error! Bookmark not defined.
Aliases and Shortcuts .. Error! Bookmark not defined.
Memory Math... Error! Bookmark not defined.
Web-ify PowerShell ... Error! Bookmark not defined.
Best Practices for PowerShell Scripting Error! Bookmark not defined.

Best Practices for Variables..Error! Bookmark not defined.
Best Practices for Scripts..Error! Bookmark not defined.
Best Practice for Parameters ..Error! Bookmark not defined.
Best Practices for Aliases ...Error! Bookmark not defined.
Best Practices for Loops and Constructs......................Error! Bookmark not defined.
Best Practices for Switches ..Error! Bookmark not defined.
Best Practices for CommentsError! Bookmark not defined.

Database Scripting .. Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Database Terminology... Error! Bookmark not defined.
Databases...Error! Bookmark not defined.
Tables ...Error! Bookmark not defined.
Rows and Columns, Records and Fields......................Error! Bookmark not defined.

Working with Databases.. Error! Bookmark not defined.
Persisting DataTables...Error! Bookmark not defined.
Connecting to a Database ..Error! Bookmark not defined.
Defining a Query ...Error! Bookmark not defined.
Executing the Query ...Error! Bookmark not defined.
Reading Data ..Error! Bookmark not defined.
Finishing Up ..Error! Bookmark not defined.

Database Example .. Error! Bookmark not defined.
Extending Types.. Error! Bookmark not defined.

The Types File ... Error! Bookmark not defined.
Aliasing .. Error! Bookmark not defined.
Adding Features .. Error! Bookmark not defined.
Why is This Useful? ... Error! Bookmark not defined.

PowerShell Jump-Start for VBScripters Error! Bookmark not defined.
Variables.. Error! Bookmark not defined.
COM Objects ... Error! Bookmark not defined.

Instantiating Objects ...Error! Bookmark not defined.
Using Objects..Error! Bookmark not defined.
GetObject..Error! Bookmark not defined.

Comments ... Error! Bookmark not defined.
Loops and Constructs.. Error! Bookmark not defined.
Type Conversion.. Error! Bookmark not defined.
Operators and Special Values... Error! Bookmark not defined.
Functions and Subs ... Error! Bookmark not defined.
Error Handling.. Error! Bookmark not defined.
Windows Management Instrumentation Error! Bookmark not defined.
Active Directory Services Interface.. Error! Bookmark not defined.
Common Tasks in VBScript... Error! Bookmark not defined.
PowerShell Paradigm Change .. Error! Bookmark not defined.

Cmdlet Reference .. Error! Bookmark not defined.
Add-Content... Error! Bookmark not defined.
Add-History .. Error! Bookmark not defined.
Add-Member .. Error! Bookmark not defined.
Add-PSSnapin ... Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Clear-Content .. Error! Bookmark not defined.
Clear-Item .. Error! Bookmark not defined.
Clear-ItemProperty .. Error! Bookmark not defined.
Clear-Variable.. Error! Bookmark not defined.
Compare-Object .. Error! Bookmark not defined.
ConvertFrom-SecureString.. Error! Bookmark not defined.
Convert-Path.. Error! Bookmark not defined.
ConvertTo-Html ... Error! Bookmark not defined.
ConvertTo-SecureString.. Error! Bookmark not defined.
Copy-Item .. Error! Bookmark not defined.
Copy-ItemProperty... Error! Bookmark not defined.
Export-Alias ... Error! Bookmark not defined.
Export-Clixml ... Error! Bookmark not defined.
Export-Console .. Error! Bookmark not defined.
Export-Csv ... Error! Bookmark not defined.
ForEach-Object.. Error! Bookmark not defined.
Format-Custom.. Error! Bookmark not defined.
Format-List... Error! Bookmark not defined.
Format-Table ... Error! Bookmark not defined.
Format-Wide .. Error! Bookmark not defined.
Get-Acl ... Error! Bookmark not defined.
Get-Alias .. Error! Bookmark not defined.
Get-AuthenticodeSignature ... Error! Bookmark not defined.
Get-ChildItem... Error! Bookmark not defined.
Get-Command ... Error! Bookmark not defined.
Get-Content ... Error! Bookmark not defined.
Get-Credential ... Error! Bookmark not defined.
Get-Culture .. Error! Bookmark not defined.
Get-Date .. Error! Bookmark not defined.
Get-EventLog... Error! Bookmark not defined.
Get-ExecutionPolicy .. Error! Bookmark not defined.
Get-Help... Error! Bookmark not defined.
Get-History... Error! Bookmark not defined.
Get-Host... Error! Bookmark not defined.
Get-Item... Error! Bookmark not defined.
Get-ItemProperty ... Error! Bookmark not defined.
Get-Location .. Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Get-Member... Error! Bookmark not defined.
Get-PfxCertificate .. Error! Bookmark not defined.
Get-Process... Error! Bookmark not defined.
Get-PSDrive... Error! Bookmark not defined.
Get-PSProvider.. Error! Bookmark not defined.
Get-PSSnapin.. Error! Bookmark not defined.
Get-Service.. Error! Bookmark not defined.
Get-TraceSource ... Error! Bookmark not defined.
Get-UICulture... Error! Bookmark not defined.
Get-Unique .. Error! Bookmark not defined.
Get-Variable... Error! Bookmark not defined.
Get-WmiObject .. Error! Bookmark not defined.
Group-Object ... Error! Bookmark not defined.
Import-Alias.. Error! Bookmark not defined.
Import-Clixml.. Error! Bookmark not defined.
Import-Csv ... Error! Bookmark not defined.
Invoke-Expression ... Error! Bookmark not defined.
Invoke-History.. Error! Bookmark not defined.
Invoke-Item .. Error! Bookmark not defined.
Join-Path.. Error! Bookmark not defined.
Measure-Command... Error! Bookmark not defined.
Measure-Object ... Error! Bookmark not defined.
Move-Item.. Error! Bookmark not defined.
Move-ItemProperty .. Error! Bookmark not defined.
New-Alias... Error! Bookmark not defined.
New-Item.. Error! Bookmark not defined.
New-ItemProperty.. Error! Bookmark not defined.
New-Object .. Error! Bookmark not defined.
New-PSDrive ... Error! Bookmark not defined.
New-Service .. Error! Bookmark not defined.
New-TimeSpan .. Error! Bookmark not defined.
New-Variable ... Error! Bookmark not defined.
Out-Default .. Error! Bookmark not defined.
Out-File .. Error! Bookmark not defined.
Out-Host... Error! Bookmark not defined.
Out-Null.. Error! Bookmark not defined.
Out-Printer ... Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Out-String... Error! Bookmark not defined.
Pop-Location.. Error! Bookmark not defined.
Push-Location.. Error! Bookmark not defined.
Read-Host.. Error! Bookmark not defined.
Remove-Item ... Error! Bookmark not defined.
Remove-ItemProperty.. Error! Bookmark not defined.
Remove-PSDrive ... Error! Bookmark not defined.
Remove-PSSnapin .. Error! Bookmark not defined.
Remove-Variable ... Error! Bookmark not defined.
Rename-Item ... Error! Bookmark not defined.
Rename-ItemProperty ... Error! Bookmark not defined.
Resolve-Path ... Error! Bookmark not defined.
Restart-Service .. Error! Bookmark not defined.
Resume-Service .. Error! Bookmark not defined.
Select-Object ... Error! Bookmark not defined.
Select-String .. Error! Bookmark not defined.
Set-Acl ... Error! Bookmark not defined.
Set-Alias... Error! Bookmark not defined.
Set-AuthenticodeSignature.. Error! Bookmark not defined.
Set-Content.. Error! Bookmark not defined.
Set-Date... Error! Bookmark not defined.
Set-ExecutionPolicy... Error! Bookmark not defined.
Set-Item ... Error! Bookmark not defined.
Set-ItemProperty.. Error! Bookmark not defined.
Set-Location... Error! Bookmark not defined.
Set-PSDebug... Error! Bookmark not defined.
Set-Service .. Error! Bookmark not defined.
Set-TraceSource.. Error! Bookmark not defined.
Set-Variable ... Error! Bookmark not defined.
Sort-Object... Error! Bookmark not defined.
Split-Path ... Error! Bookmark not defined.
Start-Service .. Error! Bookmark not defined.
Start-Sleep... Error! Bookmark not defined.
Start-Transcript .. Error! Bookmark not defined.
Stop-Process ... Error! Bookmark not defined.
Stop-Service .. Error! Bookmark not defined.
Stop-Transcript .. Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Suspend-Service ... Error! Bookmark not defined.
Tee-Object ... Error! Bookmark not defined.
Test-Path ... Error! Bookmark not defined.
Trace-Command.. Error! Bookmark not defined.
Update-FormatData ... Error! Bookmark not defined.
Update-TypeData .. Error! Bookmark not defined.
Where-Object... Error! Bookmark not defined.
Write-Debug... Error! Bookmark not defined.
Write-Error ... Error! Bookmark not defined.
Write-Host.. Error! Bookmark not defined.
Write-Output .. Error! Bookmark not defined.
Write-Progress... Error! Bookmark not defined.
Write-Verbose.. Error! Bookmark not defined.
Write-Warning.. Error! Bookmark not defined.

Type Reference.. Error! Bookmark not defined.
Boolean.. Error! Bookmark not defined.
DateTime ... Error! Bookmark not defined.
Double.. Error! Bookmark not defined.
Int ... Error! Bookmark not defined.
String.. Error! Bookmark not defined.
Advanced Types .. Error! Bookmark not defined.
All Types .. Error! Bookmark not defined.

Index ... Error! Bookmark not defined.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Part I: Introduction

PowerShell is not only a new scripting language, it’s a brand-new way to administer
Windows from a command-line interface. Learn what PowerShell is, quickly jump into
PowerShell scripting, and review the technologies that lie underneath PowerShell’s hood.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Chapter 1

Getting Started
In this chapter, we will take a brief tour of PowerShell and introduce you to some of its
most important concepts. Many of these concepts will be covered in more detail in later
chapters. For now, we want to help you become oriented with this new environment.

What is PowerShell, and Why Should I Care?
Administrators of UNIX and Linux systems (collectively referred to as “*nix” throughout
this book) have always had the luxury of administrative scripting. In fact, most *nix
operating systems are built on a command-line interface (CLI). While most *nix systems
also feature a graphical user interface (GUI), the real work is done from the CLI. Every
variant of *nix supports some sort of shell scripting language such as Bash that enables
CLI commands to be strung together to automate administrative tasks.
Microsoft Windows has traditionally been built on a GUI rather than on a CLI, which is
the exact opposite of a typical *nix system. Automating tasks performed in a GUI is
significantly more difficult than automating tasks performed in a CLI. For example, you
must address the question of how to write a script that tells a computer to check a certain
checkbox if the contents of a text box are such-and-such? The answer is that you really
can’t. To help administrators automate various tasks, Microsoft has traditionally included
a variety of CLI tools — command-line executables. These tools provide a CLI-based
way of performing tasks by stringing these commands together in batch files that are also
called scripts. Administrators could automate these tasks. However, the CLI tools
typically only exposed a portion of Windows’ functionality, which meant you could only
automate the things for which Microsoft provided CLI tools.
In the late nineties Microsoft introduced Visual Basic Scripting Edition, which was
commonly referred to as VBScript. This scripting language was compatible with
Microsoft’s Component Object Model (COM) that forms the building blocks of Windows
itself. Because most GUI administrative tools were built on and utilized COM, it was felt
that VBScript would provide a better automation environment. Unfortunately, VBScript

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

still only automated a fraction of Windows’ capabilities. However, it can do far more
than the simple CLI batch language that evolved from Microsoft’s earliest MS-DOS
operating system.
Both CLI tools and VBScript have other problems, the primary problem being
consistency. Because both evolved over time, and were created by various groups within
Microsoft who had no shared standards to work from, each CLI tool and COM interface
(as used by VBScript) works a bit differently. This means every new tool or COM
interface you use presents a new learning curve, which takes additional time that you may
not have. All of this stems from the fact that Microsoft was never really committed to
scripting and automation for Windows. In fact, the feeling was that it was Windows,
which meant you primarily used the GUI to run it. However, as Windows’ penetration
into large companies and enterprises increased, managers and administrators accustomed
to *nix began to demand the same scripting and automation capabilities from Windows.
This brings us to PowerShell, which is Microsoft’s first comprehensive, from-scratch
effort to create a scriptable automation shell for Windows. PowerShell is built on the
Microsoft .NET Framework, which has deep ties into almost every aspect of the
operating system. Because Microsoft has made a strategic commitment to .NET,
PowerShell’s future is fairly secure since it will be built on the same platform on which
most of Microsoft’s other products will be built. In addition, above all else, PowerShell is
consistent: There are clear guidelines for how PowerShell is to be built and extended,
which means you won’t have to learn an entirely new way of doing things every time you
start a new script.
It’s critical to recognize that PowerShell isn’t a new scripting language a la VBScript.
While PowerShell has a scripting language, it’s actually an entirely new administrative
interface. You can use it interactively without scripting, to issue commands to Windows
and other Microsoft server products. You can also script it to automate more complex
tasks. PowerShell is designed to be the place where an experienced administrator spends
most of his or her time, replacing the GUI interfaces you’ve primarily used in the past in
favor of a more productive, CLI-based administrative experience.
Exchange Server 2007 is perhaps the best example of how PowerShell can be leveraged.
PowerShell was built into this version of Exchange from the outset. In fact, all of the
product’s administrative functionality was built in .NET and exposed through
PowerShell, with the administrative GUI, or console, simply utilizing that underlying
functionality. This means any Exchange administrative task can be performed in
PowerShell, which, in turn, means any task can be scripted and automated in a consistent
fashion. Whether or not the future use of PowerShell is equally comprehensive is up to
the individual product groups within Microsoft. However, with Microsoft’s strategic
commitment both to .NET and administrative automation, it’s probably a safe bet that
PowerShell will finally offer a clear, consistent, and comprehensive tool for Windows
administrative scripting.

PowerShell Requirements
PowerShell is designed to run on all recent versions of Windows including those based
on x64 processors. The only prerequisite for installing PowerShell is that you must first
install v2.0 of the Microsoft .NET Framework. Note that PowerShell will preinstall in

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

certain situations. For example, PowerShell is part of the Exchange Server 2007
administrative tools.

Quick Start
PowerShell is easy to get up and running. First by simply running PowerShell.EXE (or
select the Start Menu shortcut), you’ll be in the new shell. PowerShell is a complete shell,
which is not completely unlike the Cmd.exe shell with which you are probably already
familiar. From within PowerShell, you can run normal GUI applications like Notepad or
Calc, which open in their usual graphical windows. For applications that produce textual
output (as opposed to using a GUI), you can capture the output within the PowerShell
shell.
Under Cmd.exe, you typically ran CLI utilities like Dir, Xcopy, Cacls, and so forth.
However, under PowerShell you’ll primarily work with cmdlets (pronounced,
“command-lets”). Cmdlets serve the same role in PowerShell as CLI tools did under
Cmd.exe. The differences are they’re all built to a consistent standard and they’re all built
using the .NET Framework. PowerShell scripting involves stringing these cmdlets
together to perform various tasks. If you’re a .NET developer, you can also write your
own cmdlets.
Cmdlets are always named in a verb-noun format such as Get-Process. You can use the
built-in Get-Help cmdlet to read help when available for other cmdlets. For example,
Get-Help Get-Process displays help on the Get-Process cmdlet. However, as we’ll
cover later in this chapter, many cmdlets have aliases that make them work the same way
as the familiar Cmd.exe commands. For example, the Dir command works fine under
PowerShell because Dir is actually an alias to the appropriate cmdlet.

Navigating Your System
The old Cmd.exe shell primarily provided access to drives, files, and folders on your
system. PowerShell provides access to these, but it also provides access to additional
resources such as the Windows registry. However, PowerShell “maps” these additional
resources so they look like drives, which provides a familiar interface for working with a
variety of resources. For example, when you open PowerShell, you might have a prompt
that looks something like:
PS C:\>

This indicates that PS is currently looking at the root of the C: drive on your system. You
can see a list of current drive mappings by using the following Get-PSDrive cmdlet:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Name Provider Root CurrentLocation
---- -------- ---- ---------------
A Microsoft.... A:\
Alias Microsoft....
C Microsoft.... C:\ ...TEM\MSMAPI\1033
cert Microsoft.... \
D Microsoft.... D:\
Env Microsoft....
F Microsoft.... F:\
Function Microsoft....
HKCU Microsoft.... HKEY_CURRENT_USER
HKLM Microsoft.... HKEY_LOCAL_MACHINE
Variable Microsoft....

Notice that drive names aren’t limited to single letters. For example, the HKLM drive
maps to the HKEY_LOCAL_MACHINE portion of the registry. Also notice the
Provider column, which indicates the PowerShell provider or piece of software provides
the connectivity to that particular resource. Providers are what make PowerShell so
flexible. By simply adding a provider, you can gain access to entirely new resources
through PowerShell. In addition to internal providers for aliases, functions, and variables,
PowerShell ships with providers that give you access to certificates (the cert provider),
the registry (HKCU and HKLM), the filesystem (drive letters), and the Windows
environment (the env provider).

Additional Providers
Additional providers are available for Microsoft Visual SourceSafe and SharePoint services.
Other providers will be available in the future, although these won’t be covered or referenced in
this book.

To change locations, simply use the Set-Location cmdlet, passing it the name of the
location you want to change to as shown below.
PS C:\>Set-Location HKLM:\

Don’t Worry About the Case
PowerShell is generally case-insensitive, so Set-Location is the same as set-location.

Note that you can set yourself directly to a complete location as follows:
PS C:\>Set-location "C:\Documents and Settings"

This will change the shell’s focus directly to the indicated path. Note that the path is
contained within double quotation marks because any argument that contains spaces must
be enclosed within double quotation marks.
PowerShell also maintains a stack of locations. Think of the stack as a big pile of location
names on top of one another. You can add or push the current location onto the top of the
stack by using the Push-Location cmdlet. If you specify a path, you’ll push the current
location, and then change to the specified path. You can quickly change to the location on
the top of the stack by using the Pop-Location cmdlet. For example, the following
cmdlet moves the location C:\ to the top of the stack and changes to the C:\Test directory.
PS C:\>Push-Location C:\Test

Later, when you’re ready to quickly change back to C:\, issue the following cmdlet:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\Documents and Settings>Pop-Location

Learning to navigate through the PowerShell shell quickly is a key to using it effectively.

Using the PowerShell Command Line
PowerShell has some very basic line-editing capabilities that you can use when typing at
the command-line. These are not substitutes for a full development environment if you’re
writing scripts or cmdlets, but they provide basic features when you just need to run a
script or cmdlet interactively such as:

• Down- and Up-Arrow displays previously entered commands.

• Left- and Right-Arrow move the cursor left and right, respectively.

• Home key moves to the beginning of the current command.

• End key moves to the end of the current command.

• Ctrl+Left and Ctrl+Right jump one word to the left and right.

• Insert toggles insert/overwrite mode.

• Backspace deletes the character in front of (to the left) your cursor.

• Delete removes the character to the right of your cursor.

• Press Tab to auto-complete path names and object members. This will be examined in
more detail in later chapters.

• Esc (escape) clears the entire command-line so you can start over.

Aliases
As intuitive as PowerShell’s cmdlet names can be, they’re not always convenient to type.
For example, typing Set-Location is a poor substitute for the good ol’ cd command
under Cmd.exe. That’s why PowerShell lets you define aliases, or nicknames, for
cmdlets. For example, if you find Pop-Location to be too cumbersome, you can create a
nickname called “Popd” for it:
PS C:\>Set-Alias popl Pop-Location

Now you can use Popl in place of Pop-Location. You can remove, or undefine, an alias
by using the generic Remove-Item cmdlet:
PS C:\>Remove-Item alias:popd

This removes the Popd alias from the system. PowerShell predefines a number of useful
aliases. You can see a list of these aliases by running Get-Alias. Here’s a portion of the
output you’ll see:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

CommandType Name Definition
----------- ---- ----------
Alias ac add-content
Alias clc clear-content
Alias cli clear-item
Alias clp clear-property
Alias clv clear-variable
Alias cpi copy-item
Alias cpp copy-property
Alias cvpa convert-path
Alias epal export-alias
Alias epcsv export-csv
Alias gci get-childitem

Note that you can only set up aliases for cmdlets; aliases aren’t shortcuts for entire
command strings. For example, the following won’t work:
PS C:\>Set-Alias GoC "Set-Location C:\"

Aliases can only be for a single cmdlet or external executable, not for any accompanying
parameters or arguments. However, you can write a script that performs more complex
tasks such as executing cmdlets that have arguments, and create an alias to the script.
When you define an alias, it only lasts for the current PowerShell session. To make an
alias permanent, add it in your profile, which is a special PowerShell script that runs
when you start the shell. We’ll talk more about profiles in a bit.

Basic Cmdlets
PowerShell will happily provide a list of all registered cmdlets using Get-Command.
Here’s a partial list:
CommandType Name Definition
----------- ---- ----------
Cmdlet add-content add-content [-Path] String[]...
Cmdlet add-history add-history [[-InputObject] ...
Cmdlet add-member add-member [-Type] MshMember...
Cmdlet add-mshsnapin add-mshsnapin [-Name] String...
Cmdlet clear-content clear-content [-Path] String...
Cmdlet clear-item clear-item [-Path] String[] ...
Cmdlet clear-property clear-property [-Path] Strin...
Cmdlet clear-variable clear-variable [-Name] Strin...
Cmdlet combine-path combine-path [-Path] String[...
Cmdlet compare-object compare-object [-ReferenceOb...
Cmdlet convert-HTML convert-HTML [[-Property] Ob...
Cmdlet convert-path convert-path [-Path] String[...

In Chapter 9, we’ll talk you through output formatting, which helps prevent information from
getting lost “off the edge” of PowerShell’s 80-column display window.

Using Get-Command is a good way to inventory what your capabilities within
PowerShell are. For any given cmdlet, Get-Command tells you more about it. For
example, the following example describes what the Set-Alias cmdlet does:
PS C:\>Get-Command Set-Alias

As shown below, you can also use wildcards to get Get-Help to learn more specific
information:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\>Get-Command Get-*

The following example produces a lengthy description of the Set-Alias cmdlet, along
with details about each argument, examples of how the cmdlet is used, and so forth.
PS C:\>Get-Help Set-Alias

Parameters
Many cmdlets can accept parameters that are passed by name using a hyphen, then the
parameter (or argument) name followed by a space, and then the value you’re passing to
the parameter. The following example creates a new file.
PS C:\>New_Item –type file "myfile.txt"

Notice the -type parameter, which is given the values file and a filename. When
parameters are passed by name, they can be passed in any order. Some parameter names
may be abbreviated such as -db for –debug. Valid abbreviations are always listed in the
command’s help.

Ubiquitous Parameters
Most cmdlets support a set of ubiquitous parameters, which are always optional. This
means ubiquitous parameters such as those listed below don’t need to be specified if you
don’t want to use them.

• -Debug (-db). Instructs the cmdlet to provide additional programmer-level detail about
the operation.

• -ErrorAction (-ea). Controls the behavior of the cmdlet when an error occurs. Values
can be NotifyContinue (which is the default), NotifyStop, SilentContinue,
SilentStop, and Inquire.

• -ErrorVariable (-ev). Specifies the name of a variable that will store all objects that
encountered an error while processing. The specified variable is processed in addition
to the built-in $ERROR variable.

• -OutVariable (-ov). Specified the name of a variable in which to place all objects that
are output from the cmdlet.

• -Verbose (-vb). Instructs the cmdlet to produce additional output about its actions and
progress.

Snap-Ins
A snap-in is essentially a collection of cmdlets. For example, running the Get-Pssnapin
cmdlet shows the snap-ins provided with the basic shell as shown below:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-pssnapin

Name : Microsoft.PowerShell.Core
PSVersion : 1.0
Description : This PSSnapIn contains MSH management cmdlets used to man
 onents affecting the MSH engine.

Name : Microsoft.PowerShell.Host
PSVersion : 1.0
Description : This PSSnapIn contains cmdlets used by the MSH host.

Name : Microsoft.PowerShell.Management
PSVersion : 1.0
Description : This PSSnapIn contains general management Cmdlets used to
 Windows components.

Name : Microsoft.PowerShell.Security
PSVersion : 1.0
Description : This PSSnapIn contains cmdlets to manage MSH security.

Name : Microsoft.PowerShell.Utility
PSVersion : 1.0
Description : This PSSnapIn contains utility cmdlets used to manipulate

You can add the -pssnapin parameter to the Get-Command cmdlet to see which cmdlets
are in a particular snap-in. Below is a partial list for the Microsoft.PowerShell.Utility
snap-in:
PS C:\> get-command -pssnapin microsoft.powershell.utility

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-Member Add-Member [-M
Cmdlet Clear-Variable Clear-Variable
Cmdlet Compare-Object Compare-Object
Cmdlet ConvertTo-Html ConvertTo-Html
Cmdlet Export-Alias Export-Alias [
Cmdlet Export-Clixml Export-Clixml
Cmdlet Export-Csv Export-Csv [-P
Cmdlet Format-Custom Format-Custom
Cmdlet Format-List Format-List [[
Cmdlet Format-Table Format-Table [
Cmdlet Format-Wide Format-Wide [[
Cmdlet Get-Alias Get-Alias [[-N
Cmdlet Get-Culture Get-Culture [-
Cmdlet Get-Date Get-Date [[-Da
Cmdlet Get-Host Get-Host [-Ver
Cmdlet Get-Member Get-Member [[-
Cmdlet Get-TraceSource Get-TraceSourc

As you’ll learn later in this chapter, you can make custom versions of PowerShell that
include just the snap-ins you want, which essentially creates task-specific versions of the
shell.
But wait a moment. What will happen if you create a script that relies on a particular
snap-in being present, and share that script with an administrator who doesn’t have that
snap-in? The answer is that the script won’t work. One way you can help remember
which snap-ins a script requires, is to use a self-documenting feature in PowerShell. For
example, you can add something like the following to your script:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

#requires –MshSnapIn Microsoft.PowerShell.Utility

Of course, you don’t need to specify this for the core snap-ins because they’re always
present, so there’s no way to create a shell without them. However, if you’re using
nonstandard snap-ins, it’s a good idea to add #requires to your script.

Profiles
PowerShell uses profiles to help customize the shell environment. There are a few files
which customize the profile:

• %windir%\system32\WindowsPowerShell\v1.0\profile.ps1
This profile is loaded for all users.

• %windir%\system32\WindowsPowerShell\v1.0\ Microsoft.PowerShell_profile.ps1
This profile is loaded for all users, and only for the default instance of PowerShell.

• %UserProfile%\My Documents\WindowsPowerShell\profile.ps1
This profile is loaded per-user, and affects all versions of PowerShell which are
installed.

• %UserProfile%\\My Documents\WindowsPowerShell\
Microsoft.PowerShell_profile.ps1
This profile is loaded per-user, but only affects the default instance of PowerShell.

Note that not all of these profiles exist by default, but you can create any ones that you
need to use. If these files exist, they are read in this order - conflicts are “won” by
whichever file is read last. If none of these files exist, PowerShell will use its built-in
default settings. So what’s in a profile? Listed below is an example profile that installs
with PowerShell.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Copyright (c) 2005 Microsoft Corporation. All rights reserved.

THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE

set-alias cat get-content
set-alias cd set-location
set-alias clear clear-host
set-alias cp copy-item
set-alias h get-history
set-alias history get-history
set-alias kill stop-process
set-alias lp out-printer
set-alias ls get-childitem
set-alias mount new-drive
set-alias mv move-item
set-alias popd pop-location
set-alias ps get-process
set-alias pushd push-location
set-alias pwd get-location
set-alias r invoke-history
set-alias rm remove-item
set-alias rmdir remove-item
set-alias echo write-object

set-alias cls clear-host
set-alias chdir set-location
set-alias copy copy-item
set-alias del remove-item
set-alias dir get-childitem
set-alias erase remove-item
set-alias move move-item
set-alias rd remove-item
set-alias ren rename-item
set-alias set set-variable
set-alias type get-content

function help
{
 get-help $args[0] | out-host -paging
}

function man
{
 get-help $args[0] | out-host -paging
}

function mkdir
{
 new-item -type directory -path $args
}

function md
{
 new-item -type directory -path $args
}

function prompt
{
 "PS " + $(get-location) + "> "
}

& {
 for ($i = 0; $i -lt 26; $i++)
 {
 $funcname = ([System.Char]($i+65)) + ':'
 $str = "function global:$funcname { set-location $funcname } "
 invoke-command $str

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

 }
}

This profile is really little more than a “startup script.” It starts by setting several cmdlet
aliases so that familiar commands like Cd (the MS-DOS “change directory” command)
are aliased to an equivalent PowerShell cmdlet (Set-Location in this case). It then
declares several functions. For example, the Get-Help cmdlet exists to access
PowerShell’s built-in help files. The Help function defined by this profile calls Get-
Help, passes the name of the help file you asked for (that’s the $args[0] part), and then
pipes the output to the Out-Host cmdlet that has the -paging parameter. This means your
help will appear on one screen at a time instead of scrolling by too quickly to read.
The coolest part of this sample profile is the last bit, which takes some careful decoding:
& {
 for ($i = 0; $i -lt 26; $i++)
 {
 $funcname = ([System.Char]($i+65)) + ':'
 $str = "function global:$funcname { set-location $funcname } "
 invoke-command $str
 }
}

The & operator means invoke or, “Please run the following code.” So everything within
the outer set of curly braces will execute. In other words, it’s a code block that will run
each time you start PowerShell with this profile. So what does it do?
A for loop (which we’ll cover in Chapter 8) is set to count from zero to 25. That is, the
for loop starts at zero, continues while it’s less than 26, and increments by 1 each time
through the loop. Within the loop a variable named $funcname is created. The loop’s
current value (0 to 25) is added to 65, and an ASCII character of that value is selected.
For example, 65 is the letter “A” and 66 is the letter “B”. A colon character is appended,
making the value of $funcname something like “A:” or “B:” all the way to “Z:”. All of
these look like drive letters, right?
A variable named $str is then created. The first time through the loop, it contains the
string “function global:A: {set-location A: }”. You can see where “A:” (and then “B:”,
then “C:”, and so forth) are inserted at the location of $funcname. The Invoke-
Command cmdlet then executes whatever code is inside $str. Essentially, this loop is
declaring 26 new functions named A:, B:, etc. that execute the Set-Location cmdlet.
What’s the point of all this? In the old Cmd.exe shell, you could type a drive letter like C:
to “change” to that drive. Since by default PowerShell doesn’t support that functionality,
these 26 dynamically-declared functions provide that capability, making PowerShell
work a bit more like the old, familiar Cmd.exe shell. This is the power of a profile -
Setting up PowerShell to work the way you want.
All of these aliases and functions become available right within the PowerShell
environment. You can modify this example to create your own profile or create your own
profile entirely from scratch. Simply use the same script editor or development
environment such as SAPIEN PrimalScript that you use to write PowerShell scripts.

Scripts
So far, we looked at ways to run cmdlets directly and view their output. PowerShell
scripts are designed to string several cmdlets together to automate more complex tasks.
PowerShell scripts must have the filename extension .PS1; to run a script, simply type its

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

name without the extension. PowerShell will look in the environment Path variable or
any files with the .PS1 extension to find your script. If your script takes input arguments,
then type them after the script name:
. Myscript arg1 arg2

Did you notice the period at the beginning of the line? This period tells PowerShell to
execute the script in the current scope, which we’ll discuss in a bit. Scripts use their own
language, which is similar to both VBScript and C#. Most of the remainder of this book
will be spent discussing this scripting language.

How Can it Tell?
How can PowerShell tell when you’re typing a script name, cmdlet name, or alias? When you
type any name, PowerShell first looks for an alias, then a function, then a cmdlet, then a script,
and then an external executable.

Why did Microsoft choose to use a new language rather than using something that
already existed like VBScript? A few reasons come to mind. First, PowerShell is built on
.NET, which is the scripting language needed to leverage .NET’s features and
capabilities, which VBScript certainly can’t do. In fact, no scripting language existed that
could really utilize .NET. In addition, a new language could also be more consistent than
languages like KiXtart, which evolved over time and are a bit of a mishmash. Microsoft
decided to go with a language that was essentially a subset of the C# .NET language,
which allows an easier “upscale” from PowerShell to the full C# language should you
ever want to make that leap.

Redirection and Substitution
One common thing you’ll need to do is redirect the output of one cmdlet into another
cmdlet to tie the two together. You may also want to redirect cmdlet output to a file to
create a report of some kind. For example, the following cmdlet can be used to create
your own reference file of available cmdlets:
PS C:\>Get-Command > commandref.txt

This cmdlet gives you a file named Commandref.txt that contains the output of the Get-
Command cmdlet. This file is located in the current location, as indicated by the
PowerShell prompt.

Append Output
To append output to an existing file, rather than overwriting it, use >> instead of >.

You can use the output of one cmdlet as the input, or argument, to another cmdlet or
language expression. The syntax is $(cmdlet), as shown in this example:
PS C:\>Get-ChildItem $(Read-Host –Prompt "Enter file path/name: ")

This can be a bit difficult to follow, so let’s walk through it slowly: The first cmdlet is
Get-ChildItem. This cmdlet is designed to accept a file path, and then display the child
items—files and subfolders, usually—of that path. The Read-Host cmdlet is designed to
read input from the command-line; its -Prompt argument defines a text prompt. So, this
example displays the following:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> Get-ChildItem $(Read-Host –Prompt "Enter file path/name: ")
Enter filename: : C:\

 Directory: Microsoft.Management.Automation.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/10/2005 9:01 PM 15320 ArchiveLogs.wsf
-a--- 1/9/2005 10:07 PM 0 AUTOEXEC.BAT
-a--- 4/10/2006 10:12 AM 17 computers.txt
-a--- 1/9/2005 10:07 PM 0 CONFIG.SYS
-a--- 4/12/2006 11:47 AM 526 hpfr5550.xml
d---- 2/26/2006 5:21 PM Documents and Settings
d---- 1/9/2005 10:32 PM Inetpub
d---- 3/2/2006 1:29 PM logs
d---- 4/17/2006 11:34 AM Program Files
d---- 4/13/2006 1:31 PM temp
d---- 4/13/2006 8:56 PM WINDOWS

The output of Read-Host—that is, whatever was typed at the prompt—is passed as the
input argument to Get-ChildItem.
Other forms of substitution are possible. For example, the following can be used to create
five files named 1, 2, 3, 4, and 5:
PS C:\>New-Item –type file $(1..5)

The New-Item cmdlets has an input argument of -Type, which accepts an item type
(specified as file) and name. For the name, we used substitution, specifying that the
values 1 through 5, inclusive, should be used. This causes the cmdlet to run once for each
value we supplied, creating five new files.

Variables
Like many scripting environments, PowerShell supports the creating and use of
variables. Think of a variable as a container that has a name and can hold values. For
example, the following command creates a new variable named $var and assigns it the
numeric value 100.
PS C:\>$var = 100

Keep in mind that variable names always begin with $ in PowerShell.
You can declare variables right at the PowerShell prompt; you don’t need to be running a
script. For example:
PS C:\Documents and Settings> $var = "C:\"
PS C:\Documents and Settings> set-location $var
PS C:\>

In the first line of this example, the variable $var is declared and set to contain the string
value “C:\”. Notice the double quotation marks around the value that mark it as a string,
or a series of characters, rather than a number. The second line executes the Set-Location
cmdlet, passing the contents of $var. As you can see from the prompt on the third line,
the location was successfully changed to C:\. It’s important to note that, when variables
are used, it’s the contents of the variable that are passed along, not the variable name. In
other words, we weren’t trying to set the location to a location named “$var”. Instead, we
set the location to whatever was contained within the variable $var.
Variables can also contain the output of cmdlets. For example, the following runs the
Get-Process cmdlet and put its entire output into the variable $a:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\>$a = get-process

Did you notice that $a was never declared, as some scripting languages require or allow
you to do? PowerShell doesn’t need variables to be declared in advance, which means
you can make up and use new variables as you go. In fact, unlike some languages,
PowerShell is designed so, as a general rule, variables aren’t declared in advance.

Variable Names and Intrinsic Variables
Variable names can contain any character. However, as shown below, the variable must
be enclosed in curly braces if it doesn’t start with a letter.
$var = 4
$var2 = 3
${@@123} = 2

It can be a bit confusing to use variable names like @@123, so we recommend sticking
with textual, meaningful names. Interestingly, a variable name can be a path such as:
PS C:\>${C:\File.txt} = "Hello!"

This variable name writes “Hello!” to a text file named C:\File.txt. Remember that every
resource PowerShell connects to can be presented with a file-like path. For example, the
path HKLM\SOFTWARE goes to the registry. This can be a powerful technique for
quickly changing values in various resources.
PowerShell provides a number of built-in variables including automatic variables and
policy variables that are listed in the PowerShell documentation. These built-in variables
provide information about the current environment, currently-executing host, and so
forth. Keep in mind that you shouldn’t name your own variables any of the names used
by these built-in variables.

Variables are Objects
It’s important to understand that PowerShell variables are objects. This is unlike
languages like VBScript, where variables are simply containers for values. In the case of
PowerShell, a variable does contain a value, but since it’s an object, it also has a number
of intrinsic capabilities. For example:
PS C:\>$var = "Hello, World"

This variable assigns the value “Hello, World” to the variable $var. $var now contains
that variable, but $var also has a number of capabilities as an object (something we’ll
touch in more in Chapters 4 and 5). One of the capabilities is the SubString() method,
which is listed below.
PS C:\>Write-Host $var.SubString(2,2)

This calls the Write-Host cmdlet, which outputs text to the console. It asks that the $var
object execute its SubString() method, which starts at the third character position
(numbering begins with 0, so 2 is the third character) and takes 2 characters. This will
output “ll” to the console. Similarly, the following example outputs the number 12,
because that’s how long the contents of $var are: 12 characters

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\>Write-Host $var.Length

Note that PowerShell doesn’t visually differentiate between variables that contain
strings and those that contain numbers:
$var = 5
$var = "Hello"

Both are perfectly legal. However, PowerShell can tell the difference. Variables
containing string values are referred to as string objects, and they come with a rich
variety of methods and properties such as SubString() and Length. For example:
PS C:\> $var = 3
PS C:\> write-host $var.length

PS C:\> $var = "Hello"
PS C:\> write-host $var.length
5

First, $var is given the numeric value 3. When asked to output the length, PowerShell
cannot because 3 isn’t a string, and so $var isn’t a string object. However, when the
contents of $var are replaced by the string “Hello,” $var becomes a string object and has
a valid Length property as shown in the output.
So, you’re probably wondering where we found out about Length, SubString, and so
forth. The short answer is - Chapter 5, where we’ll cover variables in more depth.
However, a longer answer is that PowerShell can sort of tell you. Type $a = "hello" into
PowerShell and hit Enter. Then type $a. (be sure to include a period after the letter “a”)
and hit Tab. PowerShell will start to list each member of the String object of which your
variable $a is an instance. A new member will be listed each time you hit Tab.
Eventually, you’ll come to SubString. This use of Tab is a type of text-based substitute
for the code completion features (which go by brand names such as IntelliSense and
PrimalSense) in graphical development environments.

String Variables and Embedding
String variables treat embedded variables in an interesting fashion. For example, consider
the following where $var2 is embedded in a literal string:
PS C:\> $var = "Hello"
PS C:\> $var2 = "$var, World!"
PS C:\> write-host $var2
Hello, World!

In this example, the value “Hello” was assigned to $var. The value “$var, World!” was
assigned to $var2. When passed to Write-Host, $var was expanded, which means its
contents were displayed. This occurs because $var2 was assigned using double quotation
marks. Now, consider a similar example:
PS C:\> $var = "Hello"
PS C:\> $var2 = '$var, World!'
PS C:\> write-host $var2
$var, World!

Notice the difference? This time, the value passed into $var2 was contained in single
quotation marks instead of double, which prevented $var from being expanded. So the
literal value “$var, World!” was stored in $var2, as evidence by the Write-Host output.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

$var2 is still considered a string object, and either single quotes or double quotes can be
used to contain strings.
Strings assigned with double quotation marks can also contain embedded expressions.
For example:
PS C:\> $var = "2+2 is $(2+2)"
PS C:\> write-host $var
2+2 is 4

Anything with a $ is considered either a variable or expression and is evaluated
accordingly. In this case, the expression (2+2) was recognized as a mathematical
expression, and it was evaluated for its result. Here’s one last useful example:
PS C:\> $var = "Hello"
PS C:\> $var2 = "$var, World!"
PS C:\> $var = "Goodbye"
PS C:\> write-host $var2
Hello, World!

Notice that the output of Write-Host is “Hello, World!” and not “Goodbye, World!” as
you might expect. This occurred because $var was expanded when it was assigned into
$var2. In other words, $var2 contains the static string, “Hello, World!” because $var
contained “Hello” at the time the value was assigned to $var2. Later changes to $var do
not effect the existing contents of $var2.

Parsing Mode
All of this quotation stuff can get confusing because it works somewhat differently at the
command line when you’re typing text into PowerShell. For example:
PS C:\> write-host 2+2
2+2
PS C:\>

Why didn’t it display 4? Because at the command line everything is considered a string
unless it appears in parentheses or starts with $, which means it’s a variable. So, this
works differently:
PS C:\> write-host (2+2)
4
PS C:\>

Why the difference? At the command line, PowerShell treats everything as a string,
which means you don’t have to put quotation marks around everything. That allows you
to run:
PS C:\>Set-Location C:\

Rather than having to type:
PS C:\>Set-Location "C:\"

This would be cumbersome and unintuitive, since it’s not the way past Windows shells
have worked.
This is all called the shell parsing mode, whether the shell treats things as strings by
default or not. The rules are pretty simple:

• If the first character is a number, a variable ($), or a quoted string, then the shell
works in expression mode, in which all strings must be quoted.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

• If the first character is a letter, ampersand (&), or a dot followed by a space or a
letter, then the shell works in command mode, which is where everything is
assumed to be a string unless it’s a variable or is in parentheses, as we’ve
demonstrated.

Special Characters
Sometimes, you may need to display special characters that can’t be typed. For this
reason, PowerShell provides an escape character of `, which is a backward apostrophe,
which is technically called a grave accent mark. This escape character is usually located
on the same key as ~ on your keyboard. To display a ` by itself, type ``. The special
characters are:
Character Escape Code
Null `0
Alert `a
Backspace `b
Form feed `f
New line `n
Carriage return `r
Tab `t
Vertical quote `v

Scopes
Scope is a description of the visibility of a function or variable within PowerShell. This is
a means of controlling access to variables and functions. Unless you explicitly request
otherwise, generally variables can be read and changed only within the scope where they
were originally created. Also, they’ll only be accessible to cmdlets running in the same
scope. Consider the previous example of running a script:
PS C:\>. Myscript arg1 arg2

This example shows why it was so important to specify the period - to ensure that the
script would run in the current scope, thus having access to any variables or functions
already declared within that scope. If we hadn’t used the period, PowerShell would take
its default action of creating a new scope for the script. This technique of preceding the
script name with a period and a space is called dot sourcing, which essentially makes the
script behave as if you are typing each line of the script directly into the PowerShell shell.
Unless you use dot sourcing, by default all scripts are run in a newly created scope. Child
scopes, or scopes created by another scope, can read variables from the parent scope, but
cannot change them as easily. Parent scopes cannot access child scope variables in any
way.
When you start a new instance of PowerShell, you’re working in the global scope. Any
child scope can access global scope variables such as environment variables. However,
they must explicitly label the variable as global in order to do so. We’ll touch on this in
greater detail later.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Scope Names
The global scope is simply named global, while the scope of an executing script is named script.
We’ll reveal other special scope names as we use them elsewhere in the book.

Here’s an example of scopes. Say a script declares a variable named $var. A function
runs, and also declares $var, which means there are two copies of $var in existence: one
in the script’s scope and one in the function’s scope. Because the function is contained
within the script, its scope is a child of the script’s scope. That means the function can
access script-level variables by referring to $script:var if it chooses to do so. That is, the
function can access the name of the scope (script) and the name of the variable from that
scope (var). More information on functions is coming up next.
Variables can also be declared as private, which means they’re accessible only from the
current scope, and not from within child scopes. The following example declares a
private variable named var:
PS C:\>$private:var

Here’s another example. Suppose you create a variable in the basic shell, without running
a script. That variable exists in the shell’s global scope. If you then run a script, that script
gets it own scope, which is a child of the shell itself. Therefore, by default, the script has
read access to the variable you declared in the shell because the script’s scope is a child
of the shell’s scope.
We’re going to cover scopes in a lot more detail in Chapter 4 since they’re somewhat
confusing at first, and since they can dramatically affect the way your scripts run.

Functions
Functions are little subroutines of code that are intended to be self-contained. Functions
have their own scope, as outlined in the previous discussion on scope. Variables declared
within a function are accessible only to the function. If a function is run as part of a
script, then the function can access the script’s scope because the script is the parent of
the function.
Functions are declared with the keyword function, given a name, and then can include
whatever code you need. For example:
function myFunction {
 $var = 3
 $script:var = "Hello"
}

Notice that the function’s code is enclosed by {curly braces}, which lets PowerShell
know where the function starts and stops.

Pipelines
One of the most powerful and possibly confusing aspects of PowerShell is its data
pipelines, which provide a means of passing data and objects from one cmdlet to another
in a very robust fashion. Perhaps you’ve used the Cmd.exe More utility such as the one
shown below to slow down the display of a long directory.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

C:\>Dir | More

This takes the output of Dir and “pipes” it to More, which displays the data in nice
pages, and waits for you to hit a key before displaying the next page.
Pipes have the same basic function in PowerShell. In fact, that character in between Dir
and More is called the pipe character, which is usually on the backslash key of your
keyboard. Here’s a robust example:
PS C:\>Get-Process | where { $_.handlecount -gt 400 } | Format-List

PowerShell also has a More command if you want to pipe multi-screen output to it for one-page-
at-a-time display.

This example is actually executing three cmdlets. The first, Get-Process, returns a list of
all running processes. Each process is actually an object, of sorts, with various properties.
The processes are all piped to where, which is an alias for the Where-Object cmdlet. Its
job is to sort through a list of objects and pull out those that match some criteria. In this
case, the criteria is where their handlecount property is greater than (that’s the -gt
argument) 400. All of that is piped to the Format-List cmdlet, which creates a nice,
pretty list of the results:
PS C:\> Get-Process | where { $_.handlecount -gt 400 } | Format-List

ProcessName : csrss
Id : 1080

ProcessName : explorer
Id : 1952

ProcessName : Groove
Id : 2656

ProcessName : inetinfo
Id : 1524

(This output is truncated for illustrative purposes.) The ability of pipes to pass data to
other cmdlets, and the ability of PowerShell to deal with complex, structured objects in a
text interface such as the Process object, is part of what has people so excited about
PowerShell. You can, in just a single line of code, complete fairly complex administrative
tasks.

Getting Help
PowerShell has a fairly comprehensive built-in help system. To see a list of all available
help topics, type Help *_*. For help with a specific topic, run Help topicname such as
Help about_Alias. By the way, Help is a function that incorporates the Get-Help
cmdlet. For a list of available help on absolutely everything including cmdlets and
aliases, just run Help *.

Multiple Shells
So far, we’ve been working with the “default” PowerShell shell that cannot be modified
that includes the PowerShell binaries and cmdlets. However, PowerShell understands the
concept of multiple available shells. For example, Exchange Server 2007 includes a
different shell than the default that includes the various cmdlets associated directly with

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Exchange Server (all of those cmdlets are bundled into Exchange-specific snap-ins). You
can build a new shell that includes the PowerShell binaries and snap-ins, as well as any
additional snap-ins you obtain or create. For example, this allows you to create a shell
that’s specific for a particular job task in your environment, ensuring that all related
cmdlets stay packaged together. It also helps protect the integrity of the original default
shell so you don’t mess it up by accident.
The Make-Shell cmdlet lets you create a new shell. It manages the compilation process
and takes care of all the messy details so shell creation is relatively simple. It only takes
two parameters: -out, which specifies where the new shell will go, and -namespace,
which names the runspace configuration. The runspace configuration is one of the parts
of the shell that is automatically generated, and contains the list of cmdlets, providers,
and other parts the shell needs to run. An optional parameter is -reference, which allows
you to add cmdlets to the shell. For example:
PS> make-shell –out MyNewShell –namespace MyShellWithMyCmdlet
 -reference mycmdlet.dll

You can launch your new shell from right within PowerShell as follows:
./MyNewShell

The Make-Shell cmdlet actually has a lot of other optional parameters that allow you to
specify a custom program icon, build scripts into the shell, etc. You can run Help Make-
Shell to obtain a complete list of these optional parameters. Of course, making a new
shell isn’t the only way to add cmdlets or providers. In Chapter 11 you’ll learn about
snap-ins that are a way of adding cmdlets and providers do the current session of the
shell.

Where Do You Go From Here?
This has been a whirlwind tour of PowerShell’s core features and capabilities to whet
your appetite. So what’s next?

• In Chapter 2, you’ll get a chance to write a useful PowerShell script so you can quickly
see this new shell in action.

• Chapter 3 focuses on PowerShell security, which is very important to securing and
protecting both your scripts and your environment.

• An overview of PowerShell technologies in Chapter 4 will help you understand what
PowerShell is built on, and provide a background for core technologies that you’ll
utilize within PowerShell.

Then we’ll move into the core of PowerShell scripting in the next group of chapters:
• Chapter 5 begins a look at how PowerShell deals with data including variables, arrays,

and objects. These are really the building blocks of PowerShell scripting.

• Chapter 6 covers operators, which is how values are compared and what PowerShell’s
logical constructs are built upon.

• Chapter 7 covers regular expressions, which is a powerful technique for comparison
string values to one another.

• Chapter 8 covers those logical constructs including loops and decision-making
constructs that give your scripts some intelligence.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

• Creating attractive output with PowerShell is easy, and Chapter 9 shows you how to do
it in a variety of ways.

We’re on to advanced topics in the last few chapters:
• Modularization is the topic of Chapter 10, where you’ll learn to create and use

functions, script blocks, cmdlets, and snapins.

• Error handling and debugging—two things you’ll definitely want to learn—are
covered in Chapter 11.

• Finally, Chapter 12 wraps up with a supply of real-world examples of PowerShell
scripting including scripts to work with WMI, services, Access Control Lists (ACLs),
event logs, processes, the registry, directory services, and the Web.

Chapter 13 through 16 are relatively short, and cover some highly-advanced topics that
not everyone will need—but we wanted to include them for folks who do.

• Chapter 13 is a small collection of tips and tricks we’ve learned while using
PowerShell.

• Chapter 14 covers database scripting, including a short tutorial on the basic concepts
and some examples of using databases from within PowerShell.

• PowerShell’s internal data types can be extended, and Chapter 15 shows you how.

• Chapter 16 is for readers who already know VBScript. While there’s no easy
conversion of scripts to PowerShell, we wanted to use this chapter to give you a jump
start by relating your VBScript skills to similar things in PowerShell.

Finally, two appendices provide a basic cmdlet reference and a reference to PowerShell’s
major data types.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

How to Use This Book
We want to make sure you have everything you need to effectively use this book and
PowerShell. However, you may notice that this book is lacking one important thing that
you may have expected it to contain - a CD full of sample scripts.
The sample scripts can be found online at no charge at www.SAPIENPress.com. We
included all the scripts online to make sure we can keep them updated and corrected at all
times. For your convenience, scripts can be downloaded individually or in a single ZIP
file.
SAPIEN Press’ Web site also contains detailed errata for the book including corrections
and amplifications, along with discussion forums related to the book’s contents.
For more PowerShell scripting assistance, visit www.ScriptingAnswers.com, where
you’ll find free discussion forums about PowerShell, PowerShell tutorials, a ScriptVault
full of VBScript and PowerShell scripts, and other free resources.

In this chapter, we examined at how PowerShell works and touched on most of its
major features including variables and pipelines. Remember that later chapters will
explore almost all of these topics in more detail. However, at this point you should be
comfortable running PowerShell and using it interactively to perform very basic tasks
such as running commands.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Chapter 9

Grouping, Sorting, Formatting, Exporting and More
Although PowerShell is a console-based management shell, because it is object-
oriented there are many different ways it can present data. In this chapter we’ll look at
the many ways you can manipulate, format, and even export the output from your
PowerShell commands and scripts.

Because PowerShell’s output is almost entirely text-based, it’s easy to mistake it for a
text-based shell. However, what is really happening behind the scenes is that PowerShell
is using .NET and cmdlets to carry out your commands and manipulate data as needed.
Only when all processing is complete is the final data formatted for textual presentation.
However there are many things you can do to control how the data is ultimately
presented.

Redirection
Many times you may want to save the results of a cmdlet to a text file. In PowerShell this
is easily accomplished with redirection using > or >>. In Chapter 1 we saw that >
redirects console output to a file and overwrites any existing file, while >> appends to an
existing file. If you use >> and the file doesn’t already exist, then the file will be created:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-wmiobject -class win32_computersystem >audit.txt
PS C:\> get-wmiobject -class win32_operatingsystem >>audit.txt
PS C:\> get-content audit.txt

Domain : SAPIENPRESS
Manufacturer : Dell Computer Corporation
Model : Latitude D800
Name : GODOT
PrimaryOwnerName : Administrator
TotalPhysicalMemory : 1609805824

SystemDirectory : C:\WINDOWS\system32
Organization : TestCo
BuildNumber : 2600
RegisteredUser : Administrator
SerialNumber : 55274-640-1614466-00000
Version : 5.1.2600

PS C:\>

In this example we’ve sent the output of the Get-Wmiobject cmdlets to a text file called
audit.txt. The first command creates the file and the second appends to the file. We’ll
examine other ways to control what type of output PowerShell produces, all of which you
can save to a text file using console redirection.

Out-File
PowerShell includes a cmdlet that sends output to a text file. When saving output to a
file, this cmdlet is easier to use in a script instead of trying to use redirection. You will
use this cmdlet in a pipeline:
PS C:\> Get-service |out-file c:\logs\audit.txt

If you open c:\logs\audit.txt, you’ll see the results of the Get-Service cmdlet. The cmdlet
also makes it easy to append to an existing file:
PS C:\> Get-process |out-file c:\logs\audit.txt –append

Unlike redirection, you can also instruct Out-File to not overwrite an existing file:
PS C:\> get-service |out-file c:\logs\audit.txt -noclobber
Out-File : File C:\logs\audit.txt already exists and NoClobber was

specified.

You can see that PowerShell refused to overwrite an existing file. However, it’s is easy
enough to force PowerShell overwrite an existing file:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-wmiobject -class win32_logicaldisk |out-file
c:\logs\audit.txt -force
PS C:\> get-content c:\logs\audit.txt

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 2815569920
Size : 15726702592
VolumeName : Server2003
PS C:\>

Here we sent the output of the Get-Wmiobject cmdlet to the same file and forced it to
overwrite the existing file.

Out-Printer
One of the many new PowerShell features is the ability to send a cmdlet’s output directly
to a printer using the Out-Printer cmdlet:
PS C:\> get-wmiobject -class win32_logicaldisk |out-printer

This command sends the output of the Get-Wmiobject cmdlet directly to the default
printer. If you have more than one printer, you can specify a printer by name:
PS C:\> get-wmiobject -class win32_logicaldisk |out-printer "Adobe
 PDF"

In this instance we’re sending the output the virtual printer that is installed with Adobe
Acrobat. This results in a new pdf with the output of the Get-Wmiobject cmdlet.
If you want to send output to a network printer, simply specify the printer UNC:
PS C:\> get-process |out-printer "\\Print01\HPLaserJ"

Tee-Object
As we’ve seen so far with the redirection examples, if we send the output to a file, we
don’t see the output at the console. What if we want to do both? Using PowerShell’s Tee-
Object cmdlet we can view the output and send it to a text file:
PS C:\>Get-process |tee-object c:\processes.txt

This expression displays the results of the Get-Process cmdlet and sends them to the text
file. Unfortunately, the Tee-Object doesn’t support sending output to a printer.

Write-Host
You’ve seen this cmdlet used many times in this book. It is used to provide information
to you while a script or command block is executing. The information is outside of the
command pipeline. In other words, the cmdlet does not affect the objects that are being
manipulated. Instead, it provides the feedback you requested:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> foreach ($svc in (get-service)) {
>> if ($svc.status -eq "running") {
>> write-host "Running: " $svc.DisplayName
>> }
>> }
>>

Running: Windows Audio
Running: AVG7 Alert Manager Server
Running: AVG7 Update Service
Running: AVG E-mail Scanner
Running: Background Intelligent Transfer
Running: Cryptographic Services
Running: DCOM Server Process Launcher
Running: DHCP Client
Running: DNS Client
Running: Event Log
Running: COM+ Event System
Running: IIS Admin
…

In this example, the status of each service is checked. If it is running, then we call Write-
Host to help display a message.
One of the slickest features with Write-Host is the ability to colorize the output. Write-
Host has two optional parameters: -backgroundcolor SystemColor and -
foregroundcolor SystemColor. You can use either or both of these parameters. In
addition, you can select any system color from this list:

• Black • DarkBlue

• DarkGreen • DarkCyan

• DarkRed • DarkMagenta

• DarkYellow • Gray

• DarkGray • Blue

• Green • Cyan

• Red • Magenta

• Yellow • White

Here’s an example of how you might use this feature:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

ServiceDemo.ps1
#ServiceDemo.ps1

$services=Get-wmiobject -class "Win32_service"
foreach ($svc in $services) {
 if (($svc.startmode -eq "Auto") -AND ($svc.state -ne "Running")) {
 write-host $svc.displayname $svc.state $svc.startmode `
 -backgroundcolor "White" -foregroundcolor "Red"
 }
 else
 {
 write-host $svc.displayname $svc.state $svc.startmode
 }
 }$services=Get-wmiobject -class "Win32_service"
foreach ($svc in $services) {
 if (($svc.startmode -eq "Auto") -AND ($svc.state -ne "Running")) {
 write-host $svc.displayname "["$svc.state"]" "["$svc.startmode"]" `
 -backgroundcolor "White" -foregroundcolor "Red"
 }
 else
 {
 write-host $svc.displayname "["$svc.state"]" "["$svc.startmode"]"
 }
 }

This script examines each service as queried from WMI, and displays the service’s
display name, status, and start mode. However, we’ve added one PowerShell feature.
Any service with a start type of “Auto” but is not running will be displayed in a red font
with a white background to make it stand out when the script is run.

Formatting
Just about every PowerShell cmdlet is designed to produce textual output. The cmdlet
developer creates a default output format based on the information to be delivered. For
example, the output of Get-Process is a horizontal table. However, if you need a
different output format, PowerShell has a few choices that are discussed below.

Format-List
This cmdlet produces a columnar list. Here’s a sample using Get-Process:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-process | format-list
Id : 720
Handles : 63
CPU : 0.1301872
Name : ApntEx

Id : 584
Handles : 105
CPU : 0.5107344
Name : Apoint

Id : 404
Handles : 130
CPU : 0.4706768
Name : avgamsvr

Id : 444
Handles : 205
CPU : 2.1130384
Name : avgcc
…

Even though we’ve truncated the output, you get the idea. Instead of the regular
horizontal table, each process and its properties is listed in a column. As we’ve pointed
when this cmdlet has been used in other examples, the Format-List doesn’t use all the
properties that you get with the regular cmdlet output. PowerShell tries to help by
presenting the information you are likely to need in this format. If you prefer more
control over what information is displayed, you can use the -property cmdlet parameter
to specify the properties:
PS C:\> get-process winword |format-list -property `
>> name,workingset,id,path
>>

Name : WINWORD
WorkingSet : 32522240
Id : 564
Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

PS C:\>

In this example we’ve called Get-Process seeking specific information on the WinWord
process.

How Did You Know?
You might wonder how we knew what properties can be displayed when we use the -property
cmdlet. To review, it is important to get to know the Get-Member cmdlet. This command lists all
the available properties for the process object:
get-process | get-member

Different cmdlets and objects have different properties, especially in WMI.

Format-Table
Just as there are some cmdlets that use a table format as the default, there are some that
use a list format. Of course, sometimes you may prefer a table. The format of this Get-
Wmiobject expression produces a list by default:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-wmiobject -class win32_logicaldisk

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 2815565824
Size : 15726702592
VolumeName : Server2003

DeviceID : D:
DriveType : 5
ProviderName :
FreeSpace :
Size :
VolumeName :

DeviceID : E:
DriveType : 3
ProviderName :
FreeSpace : 2891620352
Size : 24280993792
VolumeName : XP

This is not too hard to read. However, here’s the same cmdlet except using the Format-
Table:
PS C:\> get-wmiobject -class win32_logicaldisk |format-table

DeviceID DriveType ProviderName FreeSpace Size VolumeName
-------- --------- ------------ --------- ---- ----------
C: 3 2815565824 15726702592 Server2003
D: 5
E: 3 2891620352 24280993792 XP

PS C:\>

Since the ProviderName property is blank, we can clean-up this output even more by
using -property as we did with Format-List:
PS C:\> get-wmiobject -class win32_logicaldisk |format-table `
>> -property deviceID,freespace,size,volumename,drivetype
>>

deviceID freespace size volumename drivetype
-------- --------- ---- ---------- ---------
C: 2815565824 15726702592 Server2003 3
D: 5
E: 2891239424 24280993792 XP 3

PS C:\>

Notice that the property headings are in the same order that we specified in the
expression. They also use the same case.
This cmdlet lets you tweak the output by using -autosize, which automatically adjusts the
table output based on the date:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-wmiobject -class win32_logicaldisk |format-table `
>> -property deviceID,freespace,size,volumename,drivetype -autosize
>>

deviceID freespace size volumename drivetype
-------- --------- ---- ---------- ---------
C: 2815565824 15726702592 Server2003 3
D: 5
E: 2890489856 24280993792 XP 3

PS C:\>

This is the same command as before, except it includes autosize. Notice how neater the
output is. Using -autosize eliminates the need to calculate how long lines will be, add
padding or scripting voodoo. Now you can format output to meet your requirements
without all the string manipulation when using the traditional Cmd.exe shell or even
VBScript.

Format-Wide
Some cmdlets, like Get-Service, produce a long list of information that scrolls off the
console screen. Wouldn’t it be nice to get this information in multiple columns across the
console screen? We can accomplish this with the Format-Wide cmdlet:
PS C:\> get-service |format-wide

Alerter ALG
AppMgmt aspnet_state
AudioSrv Avg7Alrt
Avg7UpdSvc AVGEMS
BAsfIpM BITS
Browser CiSvc
ClipSrv clr_optimization_v2.0.50727_32
COMSysApp CryptSvc
CVPND DcomLaunch
Dhcp dmadmin
dmserver Dnscache
ERSvc Eventlog
EventSystem FastUserSwitchingCompatibility
GrooveAuditService GrooveInstallerService
GrooveRunOnceInstaller helpsvc
HidServ HTTPFilter
…

If you prefer more than two columns, which is the default, use the -column parameter to
specify the number of columns:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-service |format-wide -column 3

Alerter ALG AppMgmt
aspnet_state AudioSrv Avg7Alrt
Avg7UpdSvc AVGEMS BAsfIpM
BITS Browser CiSvc
ClipSrv clr_optimization_v2.0.5... COMSysApp
CryptSvc CVPND DcomLaunch
Dhcp dmadmin dmserver
Dnscache ERSvc Eventlog
…

However, don’t get carried away. The more columns you specify, the more you’ll find
the output getting truncated.
The Get-Service cmdlet also let’s you specify which single property you would like to
display:
PS C:\> get-service |format-wide displayname -column 3

Alerter Application Layer Gatew... Application Man...
ASP.NET State Service Windows Audio AVG7 Alert Mana...
AVG7 Update Service AVG E-mail Scanner Broadcom ASF IP...
Background Intelligent . Computer Browser Indexing Service
ClipBook .NET Runtime Optimizati... COM+ System App...
Cryptographic Services Cisco Systems, Inc. VPN... DCOM Server Pro...
DHCP Client Logical Disk Manager Ad... Logical Disk Ma...
DNS Client Error Reporting Service Event Log
COM+ Event System Fast User Switching Com... Groove Audit Serv
Groove Installer Service GrooveRunOnceInstaller Help and Support
…

Unlike Format-Table and Format-List that allow multiple properties, Format-Wide
only permits a single property. In this example we’ve specified the service’s display
name.

Format-Custom
PowerShell provides the ability for you to customize how data is presented.
Unfortunately it requires defining a new format in a custom XML file, then using the
Update–FormatData cmdlet to register it in PowerShell. Frankly, for most
administrators this cmdlet requires more effort than it’s worth since it requires a certain
degree of knowledge about .NET classes.
With this in mind, PowerShell has one custom format that lists the object class and
properties that can be useful. Here’s an example using the Get-Process cmdlet:
PS C:\> get-process winword |format-custom

class Process
{
 Id = 2308
 Handles = 431
 CPU = 31.0546544
 Name = WINWORD
}

PS C:\>

Compare this output to the same expression, but each using a different format:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-process winword|format-table

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 470 19 37076 60908 207 72.60 2308 WINWORD

PS C:\> get-process winword|format-list

Id : 2308
Handles : 470
CPU : 72.6044
Name : WINWORD

PS C:\> get-process winword|format-wide

WINWORD

PS C:\>

Of course it’s up to you to decide which format meets your needs for a given task.

From the Architect
Jeffrey Snover, the PowerShell architect, has a helpful blog entry titled “Use of Wildcards in
PowerShell Formatting” that discusses customizing output. You should be able to find this blog
entry at:
http://blogs.msdn.com/powershell/archive/2006/04/29/586775.aspx

GroupBy
All the format cmdlets include a parameter called –GroupBy that. allows you to group
output based on a specified property. For example, here is a Get-Service expression that
groups services by their status such as Running or Stopped. The output below has been
edited for brevity.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-service |format-table -groupby status

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped Alerter Alerter
Stopped ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service

 Status: Running

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio
Running Avg7Alrt AVG7 Alert Manager Server
Running Avg7UpdSvc AVG7 Update Service
Running AVGEMS AVG E-mail Scanner

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped BAsfIpM Broadcom ASF IP monitoring service ...
Stopped BITS Background Intelligent Transfer Ser...
Stopped Browser Computer Browser
Stopped CiSvc Indexing Service
Stopped ClipSrv ClipBook
Stopped clr_optimizatio... .NET Runtime Optimization Service v...
Stopped COMSysApp COM+ System Application

 Status: Running

Status Name DisplayName
------ ---- -----------
Running CryptSvc Cryptographic Services

 Status: Running

Status Name DisplayName
------ ---- -----------
Running wuauserv Automatic Updates
Running WZCSVC Wireless Zero Configuration

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped xmlprov Network Provisioning Service

PS C:\>

As you can see, grouping helps a little bit. However, this is probably not what you
expected since the cmdlet appears to be first grouping services alphabetically and then
grouping them by status.

Sort-Object
What we are really after is sorting the output first and then grouping it. The Sort-Object
cmdlet does exactly what its name implies - it sorts objects based on property values.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-process|sort-object handles

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle
 21 1 168 376 4 0.46 776 smss
 30 2 1912 2436 29 0.11 1288 cmd
 34 2 400 1524 15 0.21 2664 WLTRYSVC
 43 2 376 1392 13 0.18 2932 MsPMSPSv
 62 3 1820 4404 34 0.21 1456 ApntEx
 64 3 1744 5628 37 0.24 324 notepad
 65 2 1472 1600 14 0.17 2488 wdfmgr
 69 3 632 2044 13 0.10 1580 sqlbrowser
 72 3 828 2428 27 0.33 1208 scardsvr
 76 2 524 2116 19 0.04 828 avgupsvc
 91 5 1284 3184 29 2.16 300 svchost
 95 4 1528 5852 39 0.83 844 sqlmangr
...

Here we’ve taken the output of Get-Process and sorted it by the handles property. The
default sort is ascending, but if you prefer the cmdlet includes a -descending parameter:
PS C:\> get-process|sort-object handles -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1290 49 14000 23608 127 38.52 1892 svchost
 1076 0 0 220 2 47.18 4 System
 817 78 15856 8436 136 15.55 1628 Groove
 706 7 1888 4880 28 18.51 868 csrss
 616 16 25680 41096 127 100.01 484 explorer
 589 12 8076 1508 62 3.24 892 winlogon
 538 11 15508 8864 95 126.88 1948 Smc
 483 20 38092 63020 223 168.63 2308 WINWORD
...

Let’s return to our earlier example in which we tried to group the output of Get-Service
by status. Now we can pipe the Get-Service cmdlet to Sort-Object, specifying primary
sort on status, then on name. Next we send the object to Format-Table and group by
status. Here’s the output we get:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> get-service|sort-object status,name |format-table `
>>-groupby status
>>

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped Alerter Alerter
Stopped ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Stopped BAsfIpM Broadcom ASF IP monitoring service ...
Stopped BITS Background Intelligent Transfer Ser...
Stopped Browser Computer Browser
Stopped CiSvc Indexing Service
...
 Status: Running

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio
Running Avg7Alrt AVG7 Alert Manager Server
Running Avg7UpdSvc AVG7 Update Service
Running AVGEMS AVG E-mail Scanner
Running CryptSvc Cryptographic Services
Running DcomLaunch DCOM Server Process Launcher
Running Dhcp DHCP Client
Running Dnscache DNS Client
Running Eventlog Event Log
Running EventSystem COM+ Event System
Running IISADMIN IIS Admin
Running lanmanserver Server
Running lanmanworkstation Workstation
...

PS C:\>

Again, we’ve edited the output for brevity, but you get the picture.
One final Sort-Object parameter is –Unique, which not only gives sorted output, but it
also displays only the unique values:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> $var=@(7,3,4,4,4,2,5,5,4,8,43,54)
PS C:\> $var|sort
2
3
4
4
4
4
5
5
7
8
43
54
PS C:\> $var|sort -unique
2
3
4
5
7
8
43
54
PS C:\>

We’ve defined an array of numbers and first pipe it through a regular Sort-Object
cmdlet. Compare that to the second expression that uses -Unique. Now the output is
sorted and only unique objects are returned.

Alias Alert
You will probably find it easier to use the alias for Sort-Object, which is Sort, as we did in the last
example.

PowerShell also has a Get-Unique cmdlet that functions essentially the same as Sort -
Unique, but without the sorting feature. Here’s the array we just used piped through Get-
Unique:
PS C:\> $var|get-unique
7
3
4
2
5
4
8
43
54
PS C:\>

Where-Object
In addition to sorting, you may need to limit or filter the output. The Where-Object
cmdlet is a filter that lets you control what data is ultimately displayed. This cmdlet is
almost always used in a pipeline expression where output from one cmdlet is piped to this
cmdlet. The Where-Object cmdlet requires a code block enclosed in braces that is
executed as the filter.
Here’s an expression to get all instances of the Win32_Service class where the state
property of each object equals stopped.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

get-wmiobject -class win32_service | where {$_.state -eq "Stopped"}

You may want to further refine this expression and format the output by piping to yet
another cmdlet:
PS C:\> get-wmiobject -class win32_service | `
>>where {$_.state -eq "Stopped"} | format-wide
>>

Alerter ALG
AppMgmt aspnet_state
BAsfIpM Browser
CiSvc ClipSrv
clr_optimization_v2.0.50727_32 COMSysApp
CVPND dmadmin
dmserver ERSvc
FastUserSwitchingCompatibility GrooveAuditService
GrooveInstallerService GrooveRunOnceInstaller
helpsvc HidServ
NetDDE NetDDEdsdm
Netlogon NtLmSsp
NtmsSvc ose
PDEngine Pml Driver HPZ12
PolicyAgent RasAuto
RDSessMgr RemoteAccess
rpcapd RpcLocator
RSVP SharedAccess
SQLAgent$CRM SQLAgent$MICROSOFTSMLBIZ
SQLWriter SSDPSRV
SwPrv SysmonLog
TlntSvr TrkWks
upnphost UPS
VMAuthdService VMnetDHCP
vmount2 VMware NAT Service
VSS W3SVC
WmdmPmSN Wmi
wscsvc xmlprov

PS C:\>

In this example we’ve taken the same Get-Wmiobject expression and piped it through
Format-Wide to get a nice two column report.
The key is recognizing that the script block in braces is what filters the object. If nothing
matches, the filter then nothing will be displayed.

Exporting
PowerShell’s ability to manipulate objects is pretty formidable. We’ve seen how
PowerShell permits you to control the output format of an expression or cmdlet.
However, PowerShell even has the ability to change or export the object into something
else.

Export-CSV
A comma separated value (CSV) file is a mainstay of administrative scripting. It’s a text-
based database that can be parsed into an array or opened in a spreadsheet program like
Microsoft Excel. The cmdlet requires an input object that is typically the result of a piped
cmdlet:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Get-process | export-csv processes.csv

When you run this command on your system it creates a text file called processes.csv.
When the file is opened in a spreadsheet program, you’ll be amazed by the amount of
information that is available. In fact, it’s probably overkill for most situations.
Here’s another version of basically the same expression except this time we’re using
Select-Object to specify the properties we want returned:
PS C:\> get-process |select-object name,id,workingset,cpu| `
>> export-csv processes.csv
>>

PS C:\> get-content processes.csv
#TYPE System.Management.Automation.PSCustomObject
Name,Id,WorkingSet,CPU
acrotray,3996,6574080,0.7110224
ApntEx,1456,4718592,6.5894752
Apoint,1592,7147520,6.0787408
avgamsvr,436,7389184,4.155976
avgcc,1684,12288000,10.4550336
avgemc,860,22593536,9.5036656
avgupsvc,828,3182592,1.6824192
BCMWLTRY,2948,6508544,16.2333424
Client,1084,1019904,140.6121904
cmd,1288,1093632,0.5207488
csrss,868,3440640,82.7790304
cvpnd,4000,8015872,9.6538816
EXCEL,2452,6545408,6.6996336
explorer,484,35528704,801.6427056
firefox,3028,71385088,881.2872288
Groove,2032,11628544,25.3264176
Idle,0,16384,
inetinfo,3012,5357568,1.4420736
Microsoft.Crm.Application.Hoster,1796,28168192,14.7812544
MSASCui,1732,10907648,7.310512
MsMpEng,1832,14114816,107.8951456
MsPMSPSv,2932,1425408,1.0114544
nvsvc32,1788,3522560,2.5236288
powershell,1560,53522432,7.9314048
procexp,588,10452992,86.1438688
rapimgr,2380,6225920,3.4850112
PS C:\>

This produces a raw data report that we can further process any way we want. For
example, if the Out-File already exists it will be overwritten unless you use -NoClobber.
If you don’t want the #TYPE header, which we find distracting, specify -
NoTypeInformation as part of the Export-CSV cmdlet.
On a related note, PowerShell also has an Import-CSV cmdlet that reads the contents of
the csv file and displays the data as a table. Here’s an example with abbreviated output:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> import-csv processes.csv

Name Id WorkingSet CPU
---- -- ---------- ---
acrotray 3996 6574080 0.7110224
ApntEx 1456 4718592 6.5894752
Apoint 1592 7147520 6.0787408
avgamsvr 436 7389184 4.155976
avgcc 1684 12288000 10.4550336
avgemc 860 22593536 9.5036656
avgupsvc 828 3182592 1.6824192
cmd 1288 1093632 0.5207488
csrss 868 3440640 82.7790304
cvpnd 4000 8015872 9.6538816
EXCEL 2452 6545408 6.6996336
...

Export-CliXML
If you prefer to store results as an XML file, perhaps for processing by other tools, you
can use PowerShell’s Export-CliXML cmdlet. It works much the same way as Export-
CSV:
PS C:\>get-wmiobject -class win32_processor |export-clixml wmiproc.xml

This creates an XML file called wmiproc.xml that can be imported back into PowerShell
using Import-CliXML:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> import-clixml wmiproc.xml

AddressWidth : 32
Architecture : 0
Availability : 3
Caption : x86 Family 6 Model 9 Stepping 5
ConfigManagerErrorCode :
ConfigManagerUserConfig :
CpuStatus : 1
CreationClassName : Win32_Processor
CurrentClockSpeed : 1598
CurrentVoltage : 33
DataWidth : 32
Description : x86 Family 6 Model 9 Stepping 5
DeviceID : CPU0
ErrorCleared :
ErrorDescription :
ExtClock : 133
Family : 2
InstallDate :
L2CacheSize : 1024
L2CacheSpeed :
LastErrorCode :
Level : 6
LoadPercentage :
Manufacturer : GenuineIntel
MaxClockSpeed : 1598
Name : Intel(R) Pentium(R) M processor 1600MHz
OtherFamilyDescription :
PNPDeviceID :
PowerManagementCapabilities :
PowerManagementSupported : False
ProcessorId : A7E9F9BF00000695
ProcessorType : 3
Revision : 2309
Role : CPU
SocketDesignation : Microprocessor
Status : OK
StatusInfo : 3
Stepping : 5
SystemCreationClassName : Win32_ComputerSystem
SystemName : GODOT
UniqueId :
UpgradeMethod : 6
Version : Model 9, Stepping 5
VoltageCaps : 2
__GENUS : 2
__CLASS : Win32_Processor
...
PS C:\>

As with the other exporting cmdlets, you can use -NoClobber to avoid overwriting an
existing file.

ConvertTo-HTML
Finally, PowerShell includes a cmdlet to convert text output to an HTML table with the
ConvertTo-HTML cmdlet. At its simplest, you can run an expression like this:
PS C:\> Get-Service | ConvertTo-HTML

If you execute this expression you’ll see HTML code fly across the console, which
doesn’t do you much good. This can be changed by piping the HTML output to a file
using Out-File, specifying a file name:

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

PS C:\> Get-Service | ConvertTo-HTML |out-file services.html

Now when you open services.html in a Web browser, you’ll see a pretty complete table
of running services and their properties. By default, the cmdlet lists all properties.
However, you can specify the properties by name and in whatever order you prefer:
PS C:\> Get-Service | ConvertTo-HTML Name,DisplayName,Status |`
>> out-file services.html
>>

PS C:\>

Now when you open services.html it’s a little easier to work with. If you want to dress-up
the page a bit, ConvertTo-HTML has some additional parameters as shown in the
following table:

Table: ConvertTo-HTML Optional Parameters
Parameter Description
Head Inserts text into the <head> tag of the

html page. You might want to include
metadata or style sheet references.

Title Inserts text into the <title> tag of the
html page. This let’s you have a more
meaningful title to the page other then
the default HTMLTABLE.

Body Inserts text within the <body></body>
tag. This lets you specify body specify
formatting like fonts and colors as well
as any text you want to appear before
the table.

Here’s a script where we put it all together.

Service2HTML.ps1
#Service2HTML.ps1
a style sheet, style.css, should be in the same directory
as the saved html file.

$server=hostname
$body="Services Report for "+$server.ToUpper()+"<HR>"
$file="c:\"+$server+"-services.html"

write-host "Generating Services Report for "$server.ToUpper()

 get-service |sort -property status -descending | ConvertTo-HTML `
 Name,DisplayName,Status -Title "Service Report" `
 -Head "<link rel=stylesheet type=text/css href=style.css>" `
 -Body $body | out-file $file

write-host "Report Generation Complete! Open" $file "for results."

This script takes the Get-Service cmdlet and generates a formatted HTML page. The
script starts by defining some variables. First we want the computer name to use in the
report and other variables. Then we define a variable for the -Body parameter. If just text
is being used, we don’t have to bother with this. However, the ConvertTo-HTML
cmdlet is a little finicky and doesn’t handle the results of embedded cmdlets very well.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

By defining a variable we can ensure its value is a string. We also specify the location
and name of the saved file. We’re using the server name as part of the filename.
After a message is sent to the user informing him the report is being generated, the heart
of the script is reached. We take the Get-Service cmdlet and first pipe it to the Sort-
Object cmdlet, sorting on service status and returning the results in descending order.
This puts Running services at the top of the page and Stopped services at the bottom.
Next we pipe that to ConvertTo-HTML specifying the properties we want in the table.
We include a -head parameter so we can reference a style sheet and then the -body
parameter using the $body variable we defined at the beginning of the script. All of this is
piped to Out-File, which saves the result to an HTML file. The results can be seen in
Figure 9-1.

Figure 9-1 Service2HTML.ps1 saved HTML page

System Forms
Even though PowerShell is a console-based shell, it is built on .NET. This means we have
access to many of the .NET objects. For example, we can use .NET forms to create
graphical interfaces for PowerShell scripts.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Advanced Stuff
Working with the Windows forms is beyond basic PowerShell. However, we want to give you a
taste of the power behind PowerShell. Documentation for the System.Windows.Forms
namespace can be found at: http://msdn2.microsoft.com/en-us/library/k50ex0x9(vs.80).aspx.

First let’s look at a brief example in this script:
DemoMsgBox.ps1
#DemoMsgBox.ps1
[void][Reflection.Assembly]::LoadWithPartialName("`
System.Windows.Forms")
$MsgBox = [Windows.Forms.MessageBox]
$button=[Windows.Forms.MessageBoxButtons]::OK
$icon=[windows.forms.MessageBoxIcon]::Information
$MsgBox::show("Hello world","Demo Msg Box",$button,$icon)

In order to work with system forms, we need to load the .NET assembly, which is done in
the first line. The use of [void] prevents any information about the assembly from being
displayed by PowerShell. At this point normally we would call New-Object to create the
message box object, but PowerShell sometimes doesn’t know everything. If you try to
use New-Object, PowerShell will complain that it doesn’t have a constructor for
Windows.Forms.MessageBox or a System.Windows.Forms.MessageBox. It doesn’t
matter that this is a perfectly valid .NET object. However, we can manipulate the
assembly directly to define a button and icon, and then display the message box shown in
Figure 9-2.

Figure 9-2 PowerShell Message Box

To be honest, this is too much work. If you want to display a message box, it’s a good
idea to leverage the Windows Script Host object:

DemoPopup.ps1
#DemoPopup.ps1
$Shell=new-object -COM wscript.shell
$msg="Hello World"
$buttons=0+64
$shell.popup($msg,5,"Demo Popup",$buttons)

This script assumes you have some experience with VBScript. If this is true, you will
recognize the Wscript.Shell popup that is essentially a message box with a timer. In this
example, the popup will display for five seconds with the Information icon.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

VBScript Alert
If you use this technique, you can’t use references like VBOkOnly and VBExclamation. Instead,
you need to use the actual values such as 0 and 64. You values can be found in the VBScript
documentation.

If you want more control over your forms, you can use a script like this:

HelloForm.ps1
#HelloForm.ps1
[void][Reflection.Assembly]::LoadWithPartialName(`
"System.Windows.Forms")
$Form = New-Object System.Windows.Forms.Form
#default form size is 300x300 pixels
$Form.width=250
$form.height=200
$Label=new-object System.Windows.Forms.Label
$Label.Text="Hello World"
$Label.visible=$true
$Form.Text = "PowerShell TFM"
$Button = New-Object System.Windows.Forms.Button
$Button.Text = "OK"
#set button vertical button position
$Button.Top=$Form.Height*.50

#default button width is 75
#Center button horizontally
$Button.left=($Form.Width*.50)-75/2

$Button.Add_Click({$Form.Close()})
$Form.Controls.Add($Button)
$Form.Controls.Add($Label)
$Form.ShowDialog()

As you can see, you have to define everything when working with System forms. In this
instance, PowerShell understands how to create a System.Windows.Forms.Form object,
which makes our work a little easier. We define the form size, then add and define a text
label and button. Be sure to add the controls to the form, otherwise you’ll never see them.
By the way, we’ve added _Click method for the button, which has the form close itself.
Finally, we call the ShowDialog() method to display the form shown in Figure 9-3.

Figure 9-3: PowerShell Form

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

We’ll wrap up this chapter with a script inspired by a blog posting on Abhishek’s
PowerShell Blog (http://spaces.msn.com/abhishek225/) that uses a DataGrid form to
display information.

ServicesGrid.ps1
#ServicesGrid.ps1

[void][reflection.assembly]::LoadWithPartialName(`
"System.Windows.Forms")
[void][reflection.assembly]::LoadWithPartialName("System.Drawing")

$form = new-object System.Windows.Forms.Form
$form.Size = new-object System.Drawing.Size 400,500
$Form.Text = "PowerShell TFM"

$DataGridView = new-object System.windows.forms.DataGridView

$array= new-object System.Collections.ArrayList

$data=@(get-service | write-output)
$array.AddRange($data)
$DataGridView.DataSource = $array
$DataGridView.Dock = [System.Windows.Forms.DockStyle]::Fill
$DataGridView.AllowUsertoResizeColumns=$True

$form.Controls.Add($DataGridView)
$form.topmost = $True
$form.showdialog()

We won’t go into detail on how the script works. In general you can see where new
objects are created and properties are defined. After creating the form and datagrid, we
take the output of the Get-Service cmdlet and turn it into a .NET array that can then be
loaded into the grid. Figure 9-4 shows the resulting form.

Windows PowerShell: TFM™
Sample Chapters

Copyright ©2006 SAPIEN Technologies, Inc. All Rights Reserved.
Purchase this book in print at www.ScriptingOutpost.com.

Figure 9-4: PowerShell Grid Form

In this chapter we spent a great deal of time exploring how you can format, group, sort,
export, and display PowerShell data. Now you can either run a cmdlet or take a cmdlet
or expression, sort and group the data, and save it to an HTML file. PowerShell can
also be used to display information in graphical forms using Windows Script Host
objects or .NET forms.

